Journal of Organometallic Chemistry, 431 (1992) 47–53 Elsevier Sequoia S.A., Lausanne JOM 22589

Organo-Übergangsmetall-Chemie hochfluorierter Ligand-Systeme

XIV *. Vanadocenhexafluoroarsenat-Komplexe: Struktur von $Cp_2V(AsF_6)_2$ und ⁵¹V-NMR von $[Cp_2VCl_2]^+[AsF_6]^-$

Petra Gowik, Thomas M. Klapötke, Karsten Siems **

Fachbereich Synthetische und Analytische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, W-1000 Berlin 12 (Deutschland)

und Ulf Thewalt ***

Sektion für Röntgen- und Elektronenbeugung, Universität Ulm, Oberer Eselsberg, W-7900 Ulm (Deutschland)

(Eingegangen den 9. Dezember 1991)

Abstract

The reaction behaviour of Cp_2VCl_2 towards the oxidizers AsF₅, ClF_3/AsF_5 , $ClF_1[ClF_2]^+[AsF_6]^$ and WF₆ has been investigated. Whereas in the reaction of Cp_2VCl_2 with AsF₅ in the presence of NaF the vanadocene species is oxidized to yield $[Cp_2VCl_2]^+[AsF_6]^-$, Cp_2VCl_2 does not react either with WF₆ or with ClF or $[ClF_2]^+[AsF_6]^-$ in dilute solution. Similarly, the vanadium in Cp_2VCl_2 is not oxidized by treatment with ClF_3/AsF_5 in CFCl₃ solution but gives $Cp_2VCl(AsF_6)$, $[ClF_2]^+[AsF_6]^-$, AsF₃ and Cl₂. The reaction of Cp_2VCl_2 with three equivalents of AsF₅ affords $Cp_2V(AsF_6)_2$, Cl₂ and AsF₃ in quantitative yield. In the presence of anhydrous HF Cp_2VCl_2 can be oxidized with either AsF₅ or with AgAsF₆ to give $[Cp_2V(AsF_6)_2]^+[AsF_6]^-$. The ⁵¹V NMR spectrum of $[Cp_2VCl_2]^+[AsF_6]^-$ has been recorded. The structure of $Cp_2V(AsF_6)_2$ has been determined by a single crystal X-ray diffraction study.

Zusammenfassung

Das Reaktionsverhalten von Cp_2VCl_2 gegenüber den Oxidationsmitteln AsF₅, ClF₃/AsF₅, ClF, [ClF₂]⁺[AsF₆]⁻ und WF₆ wurde untersucht. Während die Vanadocen-Einheit in Cp_2VCl_2 durch AsF₅

Correspondence to: Priv. Doz. Dr. Th.M. Klapötke, Fachbereich Synthetische und Analytische Chemie, Technische Universität Berlin, Straße des 17. Juni 135, W-1000 Berlin 12, Deutschland, or Prof. Dr. U. Thewalt, Sektion für Röntgen und Elektronenbeugung, Universität Ulm, Oberer Eselsberg, W-7900 Ulm, Deutschland.

^{*} XIII. Mitteilung siehe Lit. 1.

^{** &}lt;sup>51</sup>V-NMR-Spektroskopie.

^{***} Röntgenstrukturanalyse.

in Anwesenheit von NaF oxidiert und somit $[Cp_2VCl_2]^+[AsF_6]^-$ erhalten wird, reagiert Cp_2VCl_2 weder mit WF₆ noch mit ClF bzw. $[ClF_2]^+[AsF_6]^-$ in verdünnter Lösung. Ebenso führt auch die Umsetzung von Cp2VCl2 mit ClF3/AsF5 in CFCl3-Lösung nicht zur Oxidation des Vanadiums, sondern liefert vielmehr Cp₂VCl(AsF₆), [ClF₂]⁺[AsF₆]⁻, AsF₃ und Cl₂. Die Umsetzung von Cp₂VCl₂ mit drei Äquivalenten AsF₅ führt zur quantitativen Bildung von $Cp_2V(AsF_6)_2$, AsF₃ und Cl₂. In Anwesenheit von wasserfreiem HF kann Cp₂V(AsF₆)₂ mittels AsF₅ oder AgAsF₆ zu [Cp₂V(AsF₆)₂]⁺- $[AsF_6]^-$ oxidiert werden. Das ⁵¹V-NMR-Spektrum von $[Cp_2VCl_2]^+[AsF_6]^-$ wurde aufgenommen. Die Struktur von Cp₂V(AsF₆)₂ im Kristall wurde mittels Röntgenbeugung bestimmt.

Einführung

Im Rahmen unserer Untersuchungen auf dem Gebiet der Metallocen-Chemie hochfluorierter Ligand-Systeme haben wir, ausgehend von Cp_2VCl_2 (1), bereits über die Synthese und EPR-spektroskopische Charakterisierung der paramagnetischen Vanadocen(IV)-Spezies $Cp_2V(AsF_6)_2$ (2), $Cp_2V(SbF_6)_2$ (3) und Cp_2VCl - (AsF_{c}) (4) berichtet [1-3]. Die strukturelle Charakterisierung durch Röntgenbeugung gelang allerdings bislang ausschließlich von 3 [2]. Durch den Einsatz von AsF_{5} als Oxidationsmittel gelang ferner in Anwesenheit von katalytischen Mengen an wasserfreiem HF (Facilitator) die Synthese der Vanadocenium(V)-Kationen $[Cp_2VCl_2]^+[AsF_6]^-$ (5) (Röntgenstrukturanalyse [1]) und $[Cp_2V(AsF_6)_2]^+[AsF_6]^-$ (6) [1]. Da wir zeigen konnten, daß zwar HF, nicht aber die Halogene F₂, Br₂, I₂ oder AsF₃, diese Oxidationsreaktion begünstigen [1], interessierte uns nun die Frage, ob lediglich HF oder auch Alkalimetallfluoride als Reaktionsbegünstiger (Facilitator) aktiv sind. Ferner sollte untersucht werden, inwieweit in nicht-katalysierten Reaktionen starke Oxidationsmittel (wie z.B. ClF, ClF₃, WF₆) zur Oxidation des Vanadiums befähigt sind.

Ergebnisse und Diskussion

Chemische und spektroskopische Aspekte

Während wir bereits früher die Bildung von $Cp_2V(AsF_6)_2$ (2) gemäß Gl. 1 beobachtet haben [1], konnten wir jetzt zeigen, daß 2 in reinem SO₂ nicht weiter mit AsF₅ reagiert. Jedoch führt unter Anwesenheit von NaF als Facilitator die Umsetzung von 1 mit AsF, zur (thermodynamisch erlaubten [3]) Oxidation der Vanadocen-Einheit (Gl. 2) und damit zur Synthese der ionischen Komplex-Verbindung $[Cp_2VCl_2]^+[AsF_6]^-$ (5).

$$Cp_2VCl_2 + 3 AsF_5 \longrightarrow Cp_2V(AsF_6)_2 + Cl_2 + AsF_3$$
(1)

1 + 3/2 A

(2)

$$sF_5 \xrightarrow{[NaF], 25^{\circ}C, 8h} [Cp_2VCl_2]^+ [AsF_6]^- + 1/2 AsF_3$$
 (2)
(5)

Somit konnte erstmals eindeu. gezeigt werden, daß nicht nur HF sondern auch ein Alkalimetallfluorid die kine. sch gehemmte Redox-Reaktion entsprechend Gl. 2 begünstigt.

Durch die Aufnahme eines ⁵¹V-NMR-Spektrums von 5 in SO₂-Lösung konnte dieser diamagnetische Komplex nun auch erstmals NMR-spektroskopisch direkt am Zentralmetallatom charakterisiert werden (vgl. δ (ppm) (rel. zu): ¹H, 7.35 s (TMS); ¹⁹F, -58.75 q, J 938 Hz (CFCl₃) [3]). Da unseres Wissens nach noch nicht über ein ⁵¹V-NMR-Spektrum einer Vanadocenium(V)-Spezies berichtet wurde, fehlen bezüglich der Diskussion der chemischen Verschiebung bisher leider die Vergleichsmöglichkeiten; allerdings ist festzustellen, daß die ⁵¹V-Resonanz von 5 bei -134.8 ppm (rel. zu VOCl₃) mit einer Halbwertsbreite von nur 26 Hz sehr scharf ist (vgl. VOCl₃, $\Delta \nu$ 26 Hz [4]).

Analog zu Gl. 2 kann auch 2 mittels eines Überschusses an AsF₅ (Gl. 3) bzw. durch Umsetzung mit AgAsF₆ (Gl. 4) jeweils unter Anwesenheit etwa der äquimolaren Menge an wasserfreiem HF in SO₂ zu $[Cp_2V(AsF_6)_2]^+[AsF_6]^-$ (6) oxidiert werden (der Einsatz von NaF als Facilitator hat sich in diesen Versuchen nicht bewährt).

$$2 + 3/2 \operatorname{AsF}_{5} \xrightarrow{[\text{HF]}, 25^{\circ}\text{C}} [\operatorname{Cp}_{2}\text{V}(\operatorname{AsF}_{6})_{2}]^{+} [\operatorname{AsF}_{6}]^{-} + 1/2 \operatorname{AsF}_{3}$$
(3)
(6)
$$2 + \operatorname{AgAsF}_{6} \xrightarrow{[\text{HF]}, 25^{\circ}\text{C}} \mathbf{6} + \operatorname{Ag}$$
(4)

Allerdings verlaufen die gemäß Gl. 3 und Gl. 4 geführten Reaktionen in der Regel nicht quantitativ und 6 muß stets durch fraktionierte Kristallisation von noch verbleibendem Edukt 2 abgetrennt werden. Im ¹H-NMR-Spektrum (SO₂-Lösung) weist 6 ein Singulett auf, das mit δ 8.90 ppm (rel. zu TMS) die unseres Wissens nach bisher zu tiefstem Feld (höchster Frequenz) verschobene Cp-Resonanz eines Cp₂V-Systems repräsentiert (vgl. 5 δ 7.35 ppm [1]). Dieser Effekt steht gut in Einklang mit der für diamagnetische Titanocen(IV)-Vertreter beobachteten Tieffeldverschiebung bei der Substitution der Chloro-Liganden durch AsF₆-Einheiten (¹H-NMR, SO₂, rel. zu TMS, δ (ppm): Cp₂TiCl₂, 6.65 [6]; Cp₂Ti(AsF₆)₂, 7.30 [6]).

Da 1 bei der Umsetzung mit ClF_3/AsF_5 in Frigen nicht, wie erwartet, entsprechend Gl. 5 reagiert, sondern zur Ausbildung eines Produktgemisches entsprechend Gl. 6 führt, sollte ebenfalls das Reaktionsverhalten von 1 gegenüber dem getrennt (lösungsmittelfrei) frisch aus ClF_3 und AsF_5 dargestellten $[ClF_2]^+[AsF_6]^-$ untersucht werden [5] (Gln. 7,8). Hierbei zeigen die entsprechend den Gln. 5 und 6 geführten Reaktionen, daß selbst ein so starkes Oxidations- und Fluorierungsmittel wie ClF_3 nicht in der Lage ist, die kinetisch gehemmte Oxidation der Vanadocen(IV)-Einheit zum Vanadocenium(V)-Kation zu begünstigen. Unter konzentrierteren Bedingungen (bzw. bei erhöhter Temperatur) ist lediglich die vollständige Zersetzung der metallorganischen Spezies durch Reaktion mit ClF_3 zu beobachten.

$$2 \mathbf{1} + \operatorname{ClF}_{3} + 2 \operatorname{AsF}_{5} \xrightarrow{\mathcal{C} \to \mathcal{C} IF} + 2 \mathbf{5}$$

$$2 \mathbf{1} + \operatorname{ClF}_{3} + 2 \operatorname{AsF}_{5} \xrightarrow{\operatorname{CFCl}_{3}, 25^{\circ}\mathrm{C}, 8 \mathrm{h}} 4/3 \mathbf{1} + 1/3 \operatorname{Cl}_{2}$$

$$+ 1/3 \operatorname{AsF}_{3} + [\operatorname{ClF}_{2}]^{+} [\operatorname{AsF}_{6}]^{-} + 2/3 \operatorname{Cp}_{2} \operatorname{VCl}(\operatorname{AsF}_{6})$$
(6)

 $\operatorname{ClF}_3 + \operatorname{AsF}_5 \longrightarrow [\operatorname{ClF}_2]^+ [\operatorname{AsF}_6]^-$ (7)

(4)

$$\left[\operatorname{ClF}_{2}\right]^{+}\left[\operatorname{AsF}_{6}\right]^{-} + 1 \xrightarrow{\operatorname{OSOClF}, 25^{\circ}\mathrm{C}, 8 \text{ h}} // \rightarrow$$
(8)

In diesem Zusammenhang ist es nicht überraschend, daß noch mildere Oxidationsmittel wie WF_6 (Gl. 8a,b) bzw. ClF (Gl. 9) keinerlei Reaktion mit 1 in verdünnter Lösung zeigen.

$$1 + WF_6 \xrightarrow{25^\circ \text{C, OSO, 8 h}} / [Cp_2 VCl_2]^+ [WF_6]^-$$
(8a)

$$1 + 2 \operatorname{WF}_{6} \xrightarrow{25^{\circ}\mathrm{C}, \operatorname{OSO}, 8 \operatorname{h}} / / \operatorname{Cp}_{2} \operatorname{V}(\operatorname{WF}_{6})_{2} + \operatorname{Cl}_{2}$$

$$(8b)$$

$$1 + \text{ClF} \xrightarrow{25^\circ\text{C}, \text{ OSOClF}, 8 \text{ h}} // \rightarrow$$
(9)

Strukturelle Aspekte

Durch fraktionierte Kristallisation aus SO₂ eines entsprechend Gl. 4 erhaltenen Produktgemisches gelang die Züchtung sechseckiger Kristallplättchen von 2, die zur Strukturbestimmung mittels Röntgenbeugung am Einkristall geeignet waren. Figur 1 zeigt eine ORTEP-Darstellung des $Cp_2V(AsF_6)_2$ -Moleküls im Kristall. Wie zu erwarten, ist 2 isomorph zu den verwandten Spezies $Cp_2Ti(AsF_6)_2$ [6], $Cp_2Ti(SbF_6)_2$ [2] und $Cp_2V(SbF_6)_2$ (3) [2]. Das Molekül besitzt kristallographische Spiegelsymmetrie. Die entsprechende Spiegelebene steht senkrecht auf dem As-As'-Vektor. Bindungsabstände und -winkel sind in Tabelle 1 zusammengestellt.

Die F-V-F-Bindungswinkel in $Cp_2V(AsF_6)_2$ und $Cp_2V(SbF_6)_2$ unterscheiden sich kaum (77.5 bzw. 77.8°). Sie sind aber deutlich kleiner als in den Titananaloga (86.3° in $Cp_2Ti(AsF_6)_2$ und 84.1° in $Cp_2Ti(SbF_6)_2$). Die Beobachtung, dass der X-M-X-Winkel bei gleichem X in Cp_2TiX_2 -Verbindungen grösser als in Cp_2VX_2 -Verbindungen ist, wurde auch bei anderen Paaren von Cp_2MX_2 -Verbindungen gemacht. Zur Deutung wird angenommen, dass das ungepaarte Elektron des Vanadium(IV) sich in einem Orbital (d_z^2) aufhält, das so orientiert ist, dass die X-Liganden aufeinander zugedrückt werden [7,8].

Fig. 1. Projektion eines Cp₂V(AsF₆)₂-Moleküls auf die V,As,As'-Ebene.

Experimentelles

Die angewandten Arbeitstechniken haben wir bereits früher ausführlich beschrieben [1,9]. Die Darstellung von Cp_2VCl_2 (1) [10], AsF₅ [11], AgAsF₆ [12], ClF [13] und [ClF₂]⁺[AsF₆]⁻ [5] erfolgte nach Literaturvorschriften; WF₆ wurde von Air Products, HF von Union Carbide bezogen.

Die Identifizierung bereits bekannter Vanadocen-Verbindungen erfolgte (soweit nicht anders angegeben) durch Mikroelementaranalyse (C/H) und zusätzlich im Falle von paramagnetischen Komplexen durch IR- bzw. bei diamagnetischen Vertretern mittels ¹H-NMR-Spektroskopie.

$[Cp_2VCl_2]^+[AsF_6]^-$ (5) (Gl. 2)

Auf eine gefrorene Lösung von 0.20 g (0.79 mmol) Cp_2VCl_2 und 0.02 g (0.48 mmol) NaF in 15 mL SO₂ werden bei $-196^{\circ}C$ 0.20 g (1.19 mmol) AsF₅ aufkondensiert. Nach Erwärmung und 12 h Rühren bei Raumtemperatur werden das SO₂ und gebildetes AsF₃ i. Vak. abgezogen; der verbleibende schwarz-violette Rückstand wird aus 10 mL SO₂ umkristallisiert und liefert 0.35 g (0.79 mmol) analysenreines 5 in quantitativer Ausbeute.

Anal. Gef.: C, 26.91; H, 2.26. $C_{10}H_{10}AsCl_2F_6V$ (440.95) ber.: C, 27.24; H, 2.29%. ⁵¹V-NMR (70.0 MHz, 20°C, SO₂, VOCl₃): δ –134.83 ppm, $\Delta\nu$ 26 Hz. ¹H-NMR und IR-Daten entsprechen den Literaturangaben [3].

$[Cp_2V(AsF_6)_2]^+[AsF_6]^-$ (6) (Gl. 4)

Auf eine gefrorene Lösung von 0.333 g (0.595 mmol) 2 (dargestellt gemäß Lit. 1) und 0.177 g (0.596 mmol) $AgAsF_6$ in 15 mL SO_2 werden in einem Kel-F-Re-

Tabelle 1 Abstände (Å) und Winkel (°) für $Cp_2V(AsF_6)_2$ (2) ^a

		• •		
V-F(1)	2.03(1)	F(1)-V-F(1)'	77.5(5)	
V-C(1)	2.26(1)	Z(1)-V-Z(2)	133.3	
V-C(2)	2.30(1)	V-F(1)-As	173.2(5)	
V-C(3)	2.29(1)	F(1)-As-F(2)	86.7(5)	
V-C(4)	2.30(1)	F(1)-As-F(3)	85.9(5)	
V-C(5)	2.29(1)	F(1)-As-F(4)	90.4(6)	
VC(6)	2.30(1)	F(1)-As-F(5)	89.7(5)	
V-Z(1)	1.94	F(1)-As-F(6)	178.2(5)	
V-Z(2)	1.95	F(2)-As-F(3)	90.3(7)	
As-F(1)	1.78(1)	F(2)-As-F(4)	176.2(5)	
As-F(2)	1.63(1)	F(2)-As-F(5)	88.4(7)	
As-F(3)	1.64(1)	F(2)-As-F(6)	94.7(7)	
As-F(4)	1.66(1)	F(3)-As-F(4)	87.0(7)	
As-F(5)	1.66(1)	F(3)-As-F(5)	175.5(6)	
As-F(6)	1.67(1)	F(3)-As-F(6)	92.9(7)	
C(1)-C(2)	1.40(2)	F(4)-As-F(5)	94.1(7)	
C(2)-C(3)	1.42(2)	F(4)-As-F(6)	88.2(8)	
C(3)-C(3)'	1.47(2)	F(5)-As-F(6)	91.5(6)	
C(4)-C(5)	1.38(2)			
C(5)-C(6)	1.43(2)			
C(6)-C(6)'	1.49(2)			

^a Mit Z(1) und Z(2) sind die Zentren der C₅-Ringe bezeichnet, welche C(1) bzw. C(4) enthalten.

aktionsröhrchen bei -196° C 0.012 g (0.60 mmol) wasserfreies HF kondensiert. Nach Erwärmen auf Raumtemperatur wird noch 12 h bei dieser Temperatur nachgerührt; anschließend werden sämtliche flüchtigen Komponenten im dynamischen Vakuum abgezogen. Der verbleibende HF-freie Rückstand wird nun nochmals in 15 mL SO₂ gelöst und vom unlöslichen Silber (*ca.* 0.06 g, 0.55 mmol) durch Filtration (D4-Fritte) abgetrennt. Langsames Eindampfen der verbleibenden SO₂-Lösung bei Raumtemperature über einen Zeitraum von 48 h führt zu mikrokristallinem 6 (>90%) neben in Form sechseckiger Kristallplättchen kristallisiertem 2 (<10%) (Rohausbeute 0.436 g, 98% bezogen auf 6). Nach Aussortieren der Kristalle von 2 (Mikroskop, Dry-Box), die z.T. zur Röntgenstrukturanalyse geeignet waren (s.u.) und nochmaliger Umkristallisation von 6 aus SO₂ werden 0.40 g (0.535 mmol) reines 6 in 90% Ausbeute isoliert.

Anal. Gef.: C, 15.44; H, 1.50. $C_{10}H_{10}As_3F_{18}V$ (747.867) ber.: C, 16.06; H, 1.35%. ¹H-NMR (60 MHz, 20°C, SO₂, TMS): δ 8.90 ppm, s. IR (KBr-Platten, Nujol, $\tilde{\nu}$ in cm⁻¹): 3130m ν (CH); 2970–2840 (Nujol); 1460vvs,br und 1378vs (Nujol); 860m γ (CH); 730sh, 720vs, 700vs, 678sh ν (AsF); 540m,br ν (VF); 390vs,br δ (AsF).

Röntgenstrukturanalyse

Die Röntgenmessung erfolgte auf einem Philips PW 1100-Einkristalldiffraktometer (Mo- K_{α} -Strahlung, $\lambda = 0.71069$ Å; Graphitmonochromator; Raumtemperatur).

Der benutzte Kristall war in einem Glasröhrchen eingeschmolzen. Kristalldaten von $C_{10}H_{10}As_2F_{12}V$: orthorhombisch, Raumgruppe *Pnma*, Gitterkonstanten *a* 14.921(3), *b* 12.622(4), *c* 8.442(2) Å; D_{ber} 2.335 g cm⁻³. Z = 4. Die Intensitätsdaten wurden im $\Theta/2\Theta$ -Betrieb gesammelt; $2\Theta_{max}$ 50°. Von den 1446 erfassten unabhängigen Reflexen wurden die 1330 Reflexe mit $F_o > 4\sigma(F_o)$ für die weiteren Rechnungen benutzt. Als Startkoordinaten für die Strukturlösung wurden die Atomkoordinaten von $Cp_2Ti(AsF_6)_2$ [6] benutzt. Nach der isotropen Verfeinerung wurde eine empirische Absorptionskorrektur an den F_o -Werten angebracht; μ 47.1 cm⁻¹ [14]. Die abschliessenden *R*-Indices sind R = 0.087 und $R_w(F) = 0.091$.

Atom	x	у	z	Ueq
v	0.0906(1)	0.25	0.5333(2)	0.020(1)
C(1)	-0.0837(9)	0.25	0.4736(19)	0.045(6)
C(2)	-0.0660(7)	0.3268(7)	0.5646(13)	0.042(5)
C(3)	-0.0295(8)	0.2991(7)	0.7165(12)	0.046(5)
C(4)	0.1867(13)	0.25	0.7650(18)	0.057(7)
C(5)	0.2116(9)	0.1725(9)	0.6827(16)	0.067(6)
C(6)	0.2632(8)	0.1999(10)	0.5397(15)	0.070(6)
As	0.1091(1)	0.0815(1)	0.1966(1)	0.041(1)
F(1)	0.0959(6)	0.1647(7)	0.3458(10)	0.097(5)
F(2)	0.0367(11)	0.1464(6)	0.0851(13)	0.150(6)
F(3)	0.2157(9)	0.1360(10)	0.1425(14)	0.163(7)
F(4)	0.1868(11)	0.0217(7)	0.3143(17)	0.172(7)
F(5)	-0.0015(9)	0.0333(8)	0.2599(13)	0.127(6)
F(6)	0.1256(10)	0.0027(10)	0.0575(19)	0.187(7)

Atomparameter von $Cp_2V(AsF_6)_2$ (2)

Tabelle 2

Die Rechnungen erfolgten mit dem SHELX 76-Programmsystem [15]. Atomparameter siehe Tabelle 2 [16*].

Dank

Wir danken der Deutschen Forschungsgemeinschaft (KL 636/1-2), dem Fonds der Chemischen Industrie und dem Bundesminister für Bildung und Wissenschaft (BMBW; Graduiertenkolleg "Synthese und Strukturaufklärung niedermolekularer Verbindungen") für die finanzielle Unterstützung dieser Arbeit. Herrn Prof. Dr. O. Glemser (ClF₃) und der Solvay Fluor und Derivate GmbH (SO₂F₂, Frigene) sind wir für Chemikalienspenden zu Dank verpflichtet.

Literatur und Bemerkungen

- 1 F.H. Görlitz, P.K. Gowik, T.M. Klapötke, D. Wang, R. Meier und J. v. Welzen, J. Organomet. Chem., 408 (1991) 343.
- 2 P. Gowik, T. Klapötke und U. Thewalt, J. Organomet. Chem., 385 (1990) 345.
- 3 P. Gowik, T. Klapötke und J. Pickardt, Organometallics, 8 (1989) 2953.
- 4 C. Brevard und P. Granger, Handbook of High Resolution Multinuclear NMR, Wiley, New York, 1981, S. 116.
- 5 K.O. Christe und W. Sawodny, Inorg. Chem., 8 (1968) 212.
- 6 T. Klapötke und U. Thewalt, J. Organomet. Chem., 356 (1988) 173.
- 7 J.L. Petersen und L.F. Dahl, J. Am. Chem. Soc., 96 (1974) 2248.
- 8 J.L. Petersen, D.L. Lichtenberger, R.F. Fenske und L.F. Dahl, J. Am. Chem. Soc., 97 (1975) 6433.
- 9 P. Gowik und T. Klapötke, J. Organomet. Chem., 368 (1989) 35.
- 10 R.B. King, Organometallic Synthesis, Vol. 1, Academic Press, New York, London, 1965.
- 11 M. Broschag, Diplomarbeit, TU Berlin, Berlin 1991.
- 12 T. Klapötke, Polyhedron, 8 (1989) 311.
- 13 C.J. Schack und R.D. Wilson, Inorg. Synth., 24 (1986) 1.
- 14 F. Ugozzoli, Comput. Chem., 11 (1987) 109.
- 15 G.M. Sheldrick, sHELX76 Programmsystem, Göttingen, unveröffentlicht.
- 16 Weitere Einzelheiten zur Strukturbestimmung können beim FIZ, Gesellschaft für wissenschaftlichtechnische Information, mbH, W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-55004, der Autoren und des Zeitschriftenzitates angefordert werden.

^{*} Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.